Exercise 10.1.4

Find the Green's function for the equation

$$
-\frac{d^{2} y}{d x^{2}}-\frac{y}{4}=f(x),
$$

with boundary conditions $y(0)=y(\pi)=0$.

$$
\text { ANS. } \quad G(x, t)= \begin{cases}2 \sin (x / 2) \cos (t / 2), & 0 \leq x<t \\ 2 \cos (x / 2) \sin (t / 2), & t<x \leq \pi\end{cases}
$$

Solution

The Green's function for an operator \mathcal{L} satisfies

$$
\mathcal{L} G=\delta(x-t)
$$

Part (a)

For the operator $\mathcal{L}=-d^{2} / d x^{2}-1 / 4$, this equation becomes

$$
\begin{equation*}
-\frac{d^{2} G}{d x^{2}}-\frac{G}{4}=\delta(x-t) \tag{1}
\end{equation*}
$$

If $x \neq t$, then the right side is zero.

$$
-\frac{d^{2} G}{d x^{2}}-\frac{G}{4}=0, \quad x \neq t
$$

The general solution can be written in terms of sine and cosine. Different constants are needed for $x<t$ and for $x>t$.

$$
G(x, t)= \begin{cases}C_{1} \cos (x / 2)+C_{2} \sin (x / 2) & \text { if } 0 \leq x<t \\ C_{3} \cos (x / 2)+C_{4} \sin (x / 2) & \text { if } t<x \leq \pi\end{cases}
$$

Four conditions are needed to determine these four constants. Two of them are obtained from the provided boundary conditions.

$$
\begin{array}{llll}
G(0, t)=C_{1}(1)+C_{2}(0)=0 & & \rightarrow & C_{1}=0 \\
G(\pi, t)=C_{3}(0)+C_{4}(1)=0 & & \rightarrow & C_{4}=0
\end{array}
$$

As a result, the Green's function becomes

$$
G(x, t)=\left\{\begin{array}{ll}
C_{2} \sin (x / 2) & \text { if } 0 \leq x<t \\
C_{3} \cos (x / 2) & \text { if } t<x \leq \pi
\end{array} .\right.
$$

The third condition comes from the fact that the Green's function must be continuous at $x=t$: $G(t-, t)=G(t+, t)$.

$$
\begin{equation*}
C_{2} \sin \frac{t}{2}=C_{3} \cos \frac{t}{2} \quad \rightarrow \quad C_{3}=C_{2} \frac{\sin \frac{t}{2}}{\cos \frac{t}{2}} \tag{2}
\end{equation*}
$$

The fourth and final condition is obtained from the defining equation of the Green's function, equation (1).

$$
-\frac{d^{2} G}{d x^{2}}-\frac{G}{4}=\delta(x-t)
$$

Integrate both sides with respect to x from $t-$ to $t+$.

$$
\begin{gathered}
\int_{t-}^{t+}\left(-\frac{d^{2} G}{d x^{2}}-\frac{G}{4}\right) d x=\int_{t-}^{t+} \delta(x-t) d x \\
-\int_{t-}^{t+} \frac{d^{2} G}{d x^{2}} d x-\frac{1}{4} \underbrace{\int_{t-}^{t+} G d x}_{=0}=\underbrace{\int_{t-}^{t+} \delta(x-t) d x}_{=1} \\
-\left.\frac{d G}{d x}\right|_{t-} ^{t+}=1 \\
-\frac{d G}{d x}(t+, t)+\frac{d G}{d x}(t-, t)=1 \\
\frac{C_{3}}{2} \sin \frac{t}{2}+\frac{C_{2}}{2} \cos \frac{t}{2}=1
\end{gathered}
$$

Substitute equation (2) for C_{3}.

$$
\frac{C_{2}}{2} \frac{\sin \frac{t}{2}}{\cos \frac{t}{2}} \sin \frac{t}{2}+\frac{C_{2}}{2} \cos \frac{t}{2}=1
$$

Multiply both sides by $2 \cos \frac{t}{2}$.

$$
\begin{gathered}
C_{2}\left(\sin ^{2} \frac{t}{2}+\cos ^{2} \frac{t}{2}\right)=2 \cos \frac{t}{2} \\
C_{2}=2 \cos \frac{t}{2}
\end{gathered}
$$

Use equation (2) to get C_{3}.

$$
C_{3}=C_{2} \frac{\sin \frac{t}{2}}{\cos \frac{t}{2}}=2 \sin \frac{t}{2}
$$

Therefore, the Green's function for $\mathcal{L}=-d^{2} / d x^{2}-1 / 4$ subject to the provided boundary conditions is

$$
G(x, t)=\left\{\begin{array}{ll}
2 \cos \frac{t}{2} \sin \frac{x}{2} & \text { if } 0 \leq x<t \\
2 \sin \frac{t}{2} \cos \frac{x}{2} & \text { if } t<x \leq \pi
\end{array} .\right.
$$

